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ABSTRACT

In support of The Commission to Assess the Threat to the United States from Electro-
magnetic Pulse Attack, this paper examines the potential damage to satellites from high
altitude nuclear detonations not specifically targeting space assets. We provide an
overview of representative classes of satellites, their orbits, and their economic and
military importance to the U. S. Lessons learned from atmospheric nuclear tests of the late
1950°s and early 1960’s are presented. In particular, the STARFISH PRIME test of 1962
injected long-lived trapped energetic electrons into Earth’s magnetic field, causing the
early demise of several satellites. Physical principles governing natural and nuclear
weapon enhanced space environments, including trapped radiation (Van Allen belts), are
described. We review effects of various types of natural and nuclear radiation on satellite
electronic components, surface materials, and systems. In particular, we note that weapon-
induced ultraviolet radiation and its damaging effects on surface materials may have becn
underestimated in previous studies.

Twenty-one trial nuclear events with varying yields and locations were postulated as
credible terrestrial EMP attacks or other nuclear threats. Of these, seventeen were at low
L-shells and consequently present a hazard to low-Earth orbit (LEO) satellites. Four were
at high magnetic latitude, threatening GPS or geosynchronous (GEO) satellites. We
present effects of these events on three representative LEO satellites, on the GPS constel-
lation, and on a generic GEO satellite. The Air Force SNRTACS code was used to
characterizc the nuclear-weapon-generated trapped electron environment; the Satellite
Toolkit (STK) was used to assess prompt radiation exposure. We conclude that LEO
satellites are at serious risk of exceeding total-dose limits for trapped radiation if generally
accepted natural space hardening criteria arc invoked. We bclieve, howcver, that thc
probability of an individual satellite being sufficiently close to a detonation to be
threatened by prompt radiation effects is relatively low. GPS and GEO satellites are
threatened only by the very high yield (~ 10 Mt) detonations of our trial set.

We review uncertainties in our ability to predict nuclear-detonation-produced
satellite damage along with our confidence in the efficacy of these predictions. Uncertain-
ties as large as one to two orders of magnitude are postulated, particularly as relating to the
prediction of trapped radiation from nuclear bursts.

Wc¢ recommend that the Department of Defense initiate policies to:

e Reassess survivability of satellite space- and ground-based systems that support U.S.
defenses,

e Increase the level of nuclear hardening and subsidize implementation for commecrcial
satellites that support essential national missions,

e Increase funding for research in high altitude nuclear effects in order to reduce
uncertainties and the safety margins they engender, thereby decreasing the costs
associated with hardening.

e Pursue studies on the feasibility of electron radiation belt remediation.
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CHAPTER
INTRODUCTION

Use of a high altitude nuclear detonation as an electromagnetic pulse (EMP) attack on a
terrestrial targct may generate both immediate and long-term radiation threats to Earth-orbiting
satellites. In support of The Commission to Assess the Threat to the United States from
Electromagnetic Pulse Attack, this paper was written to examine potential collateral
damage to satellites from high altitude nuclear detonations. It is an analytical study of
enhanced radiation environments produced by high-altitude detonations above various
geographical regions, and their effects on representative satellites conducting long-term
missions of both military and civilian importance. Threats were chosen to bc representative
of those we believe appropriate in a time frame ranging from the present to 2015. We
believe this is the first paper to examine systematically collateral effects on satellites from
an EMP attack executed in virtually any region of the Earth. Effects of both (a) direct
radiation from a detonation as well as (b) subsequent effects of an enhanced trapped-electron
population, will be addressed.

The salient issucs examined in this paper are:

e What categories of satellites are vulnerable to malfunction or damage,
immediatcly and ultimately?

e How long would satellites not immediatcly damaged by prompt radiation
continue to function in the hostile electron belt environment?

e How does damage depend on weapon design and yicld, and on the altitude and
location of a detonation?

e What are the rcgrets for loss (temporary and permanent) of satellites in orbit?

¢ At what point in time would the nuclear-enhanced space environment cease to pose a
threat to either a satellite or its mission?

e What satellites should be considered expendable and which should be hardened?

o What are appropriate levels of hardening?

The last two issues are subjective in nature and are addressed only peripherally herein.
However, we do seek to provide enough information to raise the level of awareness of
evolving threats and to assist decision makers toward realistic appraisals of vulnerabilitics and
longevities of satellites should they be exposed to a nuclear-enhanced radiation
environment.

It is important to recognize that a satellite is part of a larger system that includes ground
stations that issue instructions to the satellite, transmit and receive communications traffic from it
as a relay, and act as reception facilities for the data that the satellite’s sensors collect. Ground
stations are at risk from EMP effects, and the medium through which a satellite’s radio signals
propagate can also be disturbed for as long as several hours due to ionization of the atmosphere
by the nuclear burst. In this paper we principally address effects on satellites themselves.



There is little question that unhardened satellites are vulnerable to high-altitude
nuclear explosions. It is a recognized fact that any country or organization with sufficient
technology, miss le lift, and guidance capability can damage or destroy a satellite in orbit using a
number of different weapons and kill mechanisms. Some military satellites are hardened
against credible -adiation threats and all satellites are hardened to withstand the natural space
radiation environment for their required lifetime in orbit. However, there is a tendency to judge
an EMP threat as unlikely, and to make investments in mitigation of other threats a higher
priority.

An extensive scientific and engineering literature deals with the phenomenology
and effects of nuclear and space radiation on satellites. The LE.E.E Transactions on
Nuclear Science from 1963-2003 contains a comprehensive set of papers that document the
growth and depth of the state of the art. Papers from the I.LE.E.E. Annual Conference on
Nuclear and Space Radiation Effects have traditionally been presented in the December
issue. The Jourral of Geophysical Research publishes scientific research on the theory and
observation of space radiation.

Space radiation consists of energetic electrons, protons, and heavy ions originating from
many sources, including (a) primary and secondary cosmic rays; (b) direct solar
emanations as well as particles energized via the interaction of the solar wind with Earth's
magnetic field; and (c) particles trapped by Earth's magnctic ficld for periods of days to
years, forming the “Van Allen belts.” Contemporary satellites are hardened against the
anticipated exposure to space radiation during their design lifetime.

In the late 1950s and early 1960s there were sixteen high altitude nuclear detonation
experiments, some of which contributed substantial additional trapped radiation, changing
the morphology of the Van Allen electron belts, increasing their intensity, and hardening
their energy spectrum. At least eight satellites that were in orbit during this time were
damaged by long-term effects of nuclear-enhanced trapped radiation. Their modes of
failure are well documented in the technical literature and are discussed in Chapter IV.
There are also papers that treat the ramifications of these “pumped” belts on the current satellite
population [Webt 1995, Pierre 1997, Cohn 2001, Keller 2002] and others that examine the
effects of direct radiation from high altitude detonations on military satellites [DTRA EM-1,
Northrop, 1996].

Owing to the specific charter of the Commission, emphasis of this paper must be
confined to collateral damage from an EMP attack. It is acknowledged that a direct attack upon
a satellite opens many issues beyond the study reported herein. In cases where there are
threats beyond the scope of this paper, we can only acknowledge them and suggest sources for
further study.



CHAPTERII
STATEMENT OF THE PROBLEM

Satellite systems today provide cost-effective services that permeatc the foundations of
contemporary society, economy, and civil infrastructure in many, if not most, developed
countries. They provide telecommunications services that are central to today's globally
integrated cconomy; they provide “big picture” data required by modern climate monitoring and
weather forecasting. Satellite-borne sensors monitor agricultural conditions worldwide and
provide data upon which yield forecasts are based, thereby making the market morc cfficient
and stabilizing agricultural cconomies.

Today there are approximately 1000 Earth orbiting satellites and of this number
approximately 550 are in Low Earth Orbit (LEO).

Table I1.1. Examples of Active LEO Assets by Mission (US Assets in Blue) May 2003

li Intel | Earth/Ocean/ | Weather Space Nav Comms |
Atmosphere Science | Search and
| Rescue
| , | R N | | |
NRO AQUA NOAA HST Nadezhda Iridium
Ofeq TERRA DMSP Galex Cosmos Globalstar
Helios Envisat Meteor ISS Cosmos
IGS Ikonos FUSE
Quickbird EO-1 TRACE
Cosmos SPOT
ZY-2 TRMM
TES Orbview-2

The United States has a large investment in satellite systems and enormous societal
and economic reliance on telecommunications, broadcast, and sensor services for civil
infrastructure. Unlikc most nations, the United States heavily utilizes space-bascd assets
for military and intelligence purposes. Early satellites with military and intelligencc
functions werc dedicated systems, but with the evolution of technology and driven by
satellite economics, a mix of dual-use satellites (e.g., Global Positioning System, GPS) and
Icased commercial satellite services (e.g., Ikonos, QuickBird, and Iridium) have become vital.

The overwhelming majority of satellites in orbit are designed, built, launched, and
operated by commcrcial enterprise. Because the pace of technological change grinds relentlessly.
there is strong economic incentive to maximize financial returns from expensive satellites within
a few years after launch—Dbefore a competitor appears in orbit with superior capabilities at lowcr
cost. Hazards of the natural space environment are known with relative certainty, and protection
against those hazards is an integral part of spacecraft design. Hardening commercial satellitcs




against even on: high-altitude nuclear explosion—admittedly an unlikely event in the world
view of most investors—would raise costs, reduce financial benefits and, given limits on booster
payloads, quite possibly reduce satellite capabilities and competitive position. In the absence of
an incentive, commercial satellite operators are happy to maximize profitability and to discount a
small perceived risk of loss due to a nuclear detonation.

Satellite vulnerability to high-altitude nuclear explosions is not a question of whether an
adversary would detonate a weapon as hypothesized, but instead turns entirely on questions of
technical feasibiity. Could an adversary—either a nation statc or a nongovernmental entity—
acquire nuclear vveapons and mount a credible threat? The answer is unquestionably “Yes.” One
must assume both nuclear weapons and delivery systems are available to credible adversaries
now and will continue to be so for the foreseeable future. For those that elect to purchase rather
than develop nuclear weapons and delivery systems, technically capable and willing purveyors
are available. North Korea, for example, has nuclear reactors to produce plutonium in quantity,
missile technology sufficient to reach well beyond Japan, and a track record as an active trader in
the international arms market. With an economy in shambles, a desperate need for hard currency,
a repressive government not subject to checks and balances of an informed populace, and a ready
market, there is little doubt that further proliferation of nuclear weapons and delivery systems is
likely. As geopolitical circumstances change and as alliances evolve, the mix of proliferants will
undoubtedly change.

Throughout this investigation there have been continuing questions dealing with
economic regrets associated with the loss of civilian satellites and tactical regrets associated with
the loss of military space assets. Questions about the latter are much easier to answer than those
dealing quantitatively with the Gross Domestic Product.



CHAPTER 1II
SATELLITE POPULATIONS

There are approximately 1000 active satellites in Earth orbit providing a wide variety of
services. Approximately 330 satellites in geosynchronous (GEO) orbit (35,786 km altitude over
the Earth’s equator) provide critical communications, intelligence surveillance, and large scale
weather observation services. Because GEO satellites remain stationary over a particular
location, they are always available for service to that region. Nearly all international TV
broadcasts and data exchange activities (banking transactions, etc.) go through geosynchronous
satellites. Because a geosynchronous satellite “hovers” over a specific region, continuous
monitoring of that region for national security purposes or weather forecasting is possible.

Approximately 30 Global Positioning System satellites (GPS), orbiting at 20,200 km
altitude and 55 degrees inclination, provide critical navigation services to both the international
community (airline and ship navigation) and the U.S. military. Smart bombs used in Operation
Iraqi Freedom would have been ineffective without critical guidance information from the GPS
satellite constellation.

Although GEO and GPS satellites are critically important to U.S. military and economic
security, it is satellites in Low Earth Orbit (LEO) that will dominate most of the discussion in
this paper. These satellites are the ones that would be most affected by a high altitude EMP
burst. (GEO and GPS satellites are unlikely to be severely damaged by EMP bursts having less
than multi-megaton yields.)

LEO satellites perform vital services for the United States. From a National Security
standpoint, reconnaissance satellites, both government and commercial, provide global
monitoring of trouble spots around the world. These satellites are critical assets to aid the War on
Terrorism. LEO weather satellites provide critical data for both civilian and military purposes.
These satellites complement the suite of weather satellites in GEO orbit by providing much
higher spatial resolution of weather patterns as well as providing weather observations at
extreme latitudes inaccessible to GEO satellites. Earth and ocean monitoring satellites, such as
TERRA and AQUA, provide multi-spectral observations of land and sea to monitor ocean
currents, pollution, fish movement, ice formation, land erosion, soil moisture content, health
status of vegetation and spread of disease, as examples. These data have both economic and
military value. During the Iraqi Freedom operation, Earth resources satellitcs were used to
monitor dust storms that have a major effect on military air operations. From a national prestige
point of view, satellites such as the Hubble Space Telescope, Space Shuttle, and the International
Space Station (ISS) arc a source of pride and inspiration to Americans. They are a symbol of
America’s preeminence in the world. LEO mobile communications/data satellite constellations
such as Iridium, Globalstar and ORBCOMM provide unique services to both commercial and
military users by allowing communications anywhere in the world using small handheld devices.

There are approximately 550 satellites from numerous countries in LEO performing
missions like the ones described above. Figure III.1 shows the division of satellites among
various mission categories. Communications and messaging satellites dominate the figure
because a constellation of several dozen satellites is required to assure complete and constant




coverage over the entire globe. Such large constellations are expensive to launch and maintain,
which is why organizations backing constellations such as Iridium and Globalstar have passed
through bankruptcy. The unique aspects of these satellites, however, have appeared to rescue
economically at least one and possibly more of these constellations. In late 2000, the U.S.
government issued a contract to Iridium Satellite LLC to procure unlimited mobile phone service
for 20,000 government users. If contract options are exercised, the total procurement will be
worth $252M and extend out to 2007 [Space News, 2000].

Intelligence, weather and Earth/ocean monitoring satellites make up 22.5% of the LEO
population. As mentioned before, many of these 120+ satellites provide critical economic and
military information. The 25 or so navigation satellites are used primarily by Russian shipping
vessels; many of these satellites are also equipped with search and rescue beacons to pinpoint the
locations of all downed light aircraft, ocean vessels in distress, and lost campers having search
and rescue transmitters. About 28 satellites are dedicated science missions monitoring the Sun,
Earth’s magnetosphere and geodesy, and the far reaches of space. Manned space endeavors are
included in this category. The last category consists mainly of small amateur radio satellites and
demonstrations of new technologies in space. There are about 83 of these satellites.

Breakout of All Low Earth Orbit Satellites by Mission
May 2003

Communications/Messaging

(53%)

~550 active
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LEO

Figure I11.1. Distribution of low-Earth orbit satellites by mission.



Breakout of All Low Earth Orbit Satellites by Country
May 2003
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Figure II1.2. Distribution of low-Earth satellites by country.

Figure III.2 shows the distribution of low-Earth orbiting satellitcs by country. Ncarly
half of all LEO satellites are U.S. owned or are primarily used by the U.S. About one-third
belongs to Russia. The remainder is distributed among numerous other nations.

Figure II1.3 shows the distribution of U.S. owned/used satellites by mission. Notc the
large percentage of assets that have a mobile voice/messaging and data transfer mission. The
bulk of these assets consist of the Globalstar, Iridium and Orbcomm constellations. These
systems have had a difficult time establishing themselves as financially viable over the last
several years, but that trend may be reversing. Iridium currently has a contract with the U.S.
government. Globalstar’s 2003 first quarter revenues were triple what they were a year ago,
while losses fell more than 80%. Business at Orbcomm is doubling every 8 months, and the
company is processing 60-70 contracts to provide messaging/tracking services for the trucking
and shipping industry in addition to providing remote monitoring of gas and water meters. The
total investment in these constellations of satellites is about six billion dollars.

Intelligence satellites in LEO provide important monitoring of hot spots around the world
via optical, radar and electronic monitoring. Details of the constellation of LEO intelligence
satellites are classified.

U.S. weather satellites in LEO include the civilian NOAA program and military Defense
Meteorological Satellite Program (DMSP), each of which maintains several spacecraft in orbit at
all times. Both of these systems employ visible, IR and microwave sensors to monitor weather
patterns, ice conditions and sea state for civilian and military purposcs.



Earth/Ocean/atmospheric monitoring satellites include satellites such as Landsat,
TERRA, AQUA, Quickscat and SeaWIFs. These assets play an important role in long-term
climatology studies as well as in monitoring pollution, crop health status, and the spread of
infectious diseases. Many of these satellites played a critical role in recent military conflicts.

Breakout of U.S. Low Earth Orbit Satellites by Mission
May 2003
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Figure 111.3. Distribution of U.S. low-Earth orbit satellites by mission.

Table III.1 lists all U.S. owned/used LEO satellites and the estimated total dollar
investment made in U.S. LEO satellites, including launch costs. Some entries, such as the
number and value of NRO assets, are estimates based on unclassified information available. One
can see from the table that the total U.S. investment in this area is approximately $90B with
about half of that amount credited to the International Space Station (ISS). Although the total
U.S. investment in LEO satellites is estimated to be on the order of $90B, it is probably unlikely
that the U.S. would have to expend that dollar amount to return the LEO constellation to an
acceptable level after a nuclear event. The International Space Station, which makes up the bulk
of the $90B+ investment, is designed to be serviced by Shuttle crews and barring a direct nuclear
attack on the asset, the Station could probably be salvaged for a fraction of the $47.5B listed in
the table. In addition, some space assets, such as UARS and Topex-Poseidon, are at the end of
their useful lives and would not be replaced or<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>